If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x=26
We move all terms to the left:
x^2+6x-(26)=0
a = 1; b = 6; c = -26;
Δ = b2-4ac
Δ = 62-4·1·(-26)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{35}}{2*1}=\frac{-6-2\sqrt{35}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{35}}{2*1}=\frac{-6+2\sqrt{35}}{2} $
| 2=n+3-3 | | -315=-105+x | | x2+10=6 | | -6y+17=3y=10 | | 7w-7=56 | | 70=5w-15 | | 4x-24+2=6x-2 | | 2/3x+15=18 | | 7(u-3)=-3u-11 | | v/3+12=18 | | 6m+m-4(-4m+1-m)m=-8 | | 8.2x=42.48 | | x/4-85=-92 | | 2y-5=6-17 | | y/4+5.3=-1.1 | | x-15+2x+43=180 | | 3/x=15/30 | | 3x-3.0=2.1 | | 7x+3x=5x+23 | | 3x+5x-7=25 | | 20/16=5/x | | x-15+2x+43=43 | | 20/16=x/4 | | 2x2+3x+2=x2+2x+8 | | 6+x/10=-4 | | -5(u+6)=2u-16 | | 3x-19=9x+11 | | 84/96=x/8 | | (5^2x)16=6^x | | x/7+5=2 | | 4X+7-x=-32 | | 7(6-2x)+28=14 |